3.812 \(\int \frac{A+B x^2}{(e x)^{3/2} (a+b x^2)^{3/2}} \, dx\)

Optimal. Leaf size=333 \[ \frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (3 A b-a B) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right ),\frac{1}{2}\right )}{2 a^{7/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}-\frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (3 A b-a B) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{a^{7/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}-\frac{(e x)^{3/2} (3 A b-a B)}{a^2 e^3 \sqrt{a+b x^2}}+\frac{\sqrt{e x} \sqrt{a+b x^2} (3 A b-a B)}{a^2 \sqrt{b} e^2 \left (\sqrt{a}+\sqrt{b} x\right )}-\frac{2 A}{a e \sqrt{e x} \sqrt{a+b x^2}} \]

[Out]

(-2*A)/(a*e*Sqrt[e*x]*Sqrt[a + b*x^2]) - ((3*A*b - a*B)*(e*x)^(3/2))/(a^2*e^3*Sqrt[a + b*x^2]) + ((3*A*b - a*B
)*Sqrt[e*x]*Sqrt[a + b*x^2])/(a^2*Sqrt[b]*e^2*(Sqrt[a] + Sqrt[b]*x)) - ((3*A*b - a*B)*(Sqrt[a] + Sqrt[b]*x)*Sq
rt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(a^(7
/4)*b^(3/4)*e^(3/2)*Sqrt[a + b*x^2]) + ((3*A*b - a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b
]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(2*a^(7/4)*b^(3/4)*e^(3/2)*Sqrt[a + b
*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.257015, antiderivative size = 333, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {453, 290, 329, 305, 220, 1196} \[ \frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (3 A b-a B) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{2 a^{7/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}-\frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (3 A b-a B) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{a^{7/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}-\frac{(e x)^{3/2} (3 A b-a B)}{a^2 e^3 \sqrt{a+b x^2}}+\frac{\sqrt{e x} \sqrt{a+b x^2} (3 A b-a B)}{a^2 \sqrt{b} e^2 \left (\sqrt{a}+\sqrt{b} x\right )}-\frac{2 A}{a e \sqrt{e x} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/((e*x)^(3/2)*(a + b*x^2)^(3/2)),x]

[Out]

(-2*A)/(a*e*Sqrt[e*x]*Sqrt[a + b*x^2]) - ((3*A*b - a*B)*(e*x)^(3/2))/(a^2*e^3*Sqrt[a + b*x^2]) + ((3*A*b - a*B
)*Sqrt[e*x]*Sqrt[a + b*x^2])/(a^2*Sqrt[b]*e^2*(Sqrt[a] + Sqrt[b]*x)) - ((3*A*b - a*B)*(Sqrt[a] + Sqrt[b]*x)*Sq
rt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(a^(7
/4)*b^(3/4)*e^(3/2)*Sqrt[a + b*x^2]) + ((3*A*b - a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b
]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(2*a^(7/4)*b^(3/4)*e^(3/2)*Sqrt[a + b
*x^2])

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{A+B x^2}{(e x)^{3/2} \left (a+b x^2\right )^{3/2}} \, dx &=-\frac{2 A}{a e \sqrt{e x} \sqrt{a+b x^2}}-\frac{(3 A b-a B) \int \frac{\sqrt{e x}}{\left (a+b x^2\right )^{3/2}} \, dx}{a e^2}\\ &=-\frac{2 A}{a e \sqrt{e x} \sqrt{a+b x^2}}-\frac{(3 A b-a B) (e x)^{3/2}}{a^2 e^3 \sqrt{a+b x^2}}+\frac{(3 A b-a B) \int \frac{\sqrt{e x}}{\sqrt{a+b x^2}} \, dx}{2 a^2 e^2}\\ &=-\frac{2 A}{a e \sqrt{e x} \sqrt{a+b x^2}}-\frac{(3 A b-a B) (e x)^{3/2}}{a^2 e^3 \sqrt{a+b x^2}}+\frac{(3 A b-a B) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+\frac{b x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{a^2 e^3}\\ &=-\frac{2 A}{a e \sqrt{e x} \sqrt{a+b x^2}}-\frac{(3 A b-a B) (e x)^{3/2}}{a^2 e^3 \sqrt{a+b x^2}}+\frac{(3 A b-a B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{a^{3/2} \sqrt{b} e^2}-\frac{(3 A b-a B) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a} e}}{\sqrt{a+\frac{b x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{a^{3/2} \sqrt{b} e^2}\\ &=-\frac{2 A}{a e \sqrt{e x} \sqrt{a+b x^2}}-\frac{(3 A b-a B) (e x)^{3/2}}{a^2 e^3 \sqrt{a+b x^2}}+\frac{(3 A b-a B) \sqrt{e x} \sqrt{a+b x^2}}{a^2 \sqrt{b} e^2 \left (\sqrt{a}+\sqrt{b} x\right )}-\frac{(3 A b-a B) \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{a^{7/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}+\frac{(3 A b-a B) \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{2 a^{7/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0417129, size = 77, normalized size = 0.23 \[ \frac{x \left (2 x^2 \sqrt{\frac{b x^2}{a}+1} (a B-3 A b) \, _2F_1\left (\frac{3}{4},\frac{3}{2};\frac{7}{4};-\frac{b x^2}{a}\right )-6 a A\right )}{3 a^2 (e x)^{3/2} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/((e*x)^(3/2)*(a + b*x^2)^(3/2)),x]

[Out]

(x*(-6*a*A + 2*(-3*A*b + a*B)*x^2*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x^2)/a)]))/(3*a^2*
(e*x)^(3/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.022, size = 386, normalized size = 1.2 \begin{align*}{\frac{1}{2\,be{a}^{2}} \left ( 6\,A\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticE} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ) ab-3\,A\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticF} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ) ab-2\,B\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticE} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ){a}^{2}+B\sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{2}\sqrt{{ \left ( -bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ){a}^{2}-6\,A{x}^{2}{b}^{2}+2\,B{x}^{2}ab-4\,Aab \right ){\frac{1}{\sqrt{b{x}^{2}+a}}}{\frac{1}{\sqrt{ex}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(3/2),x)

[Out]

1/2*(6*A*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)
^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b-3*A*((b*x+(-a*b)^(1/2))/(-a*b
)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*
b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b-2*B*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*
b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*
2^(1/2))*a^2+B*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/
(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a^2-6*A*x^2*b^2+2*B*x^2*a*b
-4*A*a*b)/(b*x^2+a)^(1/2)/b/e/(e*x)^(1/2)/a^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{{\left (b x^{2} + a\right )}^{\frac{3}{2}} \left (e x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)/((b*x^2 + a)^(3/2)*(e*x)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{2} + A\right )} \sqrt{b x^{2} + a} \sqrt{e x}}{b^{2} e^{2} x^{6} + 2 \, a b e^{2} x^{4} + a^{2} e^{2} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral((B*x^2 + A)*sqrt(b*x^2 + a)*sqrt(e*x)/(b^2*e^2*x^6 + 2*a*b*e^2*x^4 + a^2*e^2*x^2), x)

________________________________________________________________________________________

Sympy [C]  time = 49.5871, size = 97, normalized size = 0.29 \begin{align*} \frac{A \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{4}, \frac{3}{2} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{3}{2}} e^{\frac{3}{2}} \sqrt{x} \Gamma \left (\frac{3}{4}\right )} + \frac{B x^{\frac{3}{2}} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{3}{2} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{3}{2}} e^{\frac{3}{2}} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/(e*x)**(3/2)/(b*x**2+a)**(3/2),x)

[Out]

A*gamma(-1/4)*hyper((-1/4, 3/2), (3/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(3/2)*e**(3/2)*sqrt(x)*gamma(3/4)) +
B*x**(3/2)*gamma(3/4)*hyper((3/4, 3/2), (7/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(3/2)*e**(3/2)*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{{\left (b x^{2} + a\right )}^{\frac{3}{2}} \left (e x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)/((b*x^2 + a)^(3/2)*(e*x)^(3/2)), x)